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Introduction and Motivation
When developing a domain model, it seems natural to bring
the traditional informal tools of inspection and verification,
debuggers and automated test suites, to bear upon the prob-
lems that will inevitably arise. Debuggers that allow inspec-
tion of registers and memory and stepwise execution have
been a staple of software development of all sorts from the
very beginning. Automated testing has repeatedly proven its
considerable worth, to the extent that an entire design philos-
ophy (Test Driven Development) has been developed around
the writing of tests.

Unfortunately, while not entirely without their uses, the
limitations of these tools and the nature of the complexity
of models and the underlying planning systems make the
diagnosis of certain classes of problems and the verification
of their solutions difficult or impossible.

Debuggers provide a good local view of executing code,
allowing a fine-grained look at algorithms and data. This
view is, however, usually only at the level of the cur-
rent scope in the implementation language, and the data-
inspection capabilities of most debuggers usually consist of
on-line print statements. More modern graphical debuggers
offer a sort of tree view of data structures, but even this
is too low-level and is often inappropriate for the kinds of
structures created by planning systems. For instance, goal
or constraint networks are at best awkward when visualized
as trees. Any any non-structural link between data struc-
tures, as through a lookup table, isn’t captured at all. Fur-
ther, while debuggers have powerful breakpointing facilities
that are suitable for finding specific algorithmic errors, they
have little use in the diagnosis of modeling errors.

Automated testing can take several forms, few of them
convenient. Writing tests explicitly in code can require deep
knowledge of the system in which the model is going to be
executed, are therefore not portable to other planning sys-
tems, even closely related ones, and will break with changes
in the underlying system or the model, adding to the required
maintenance work. Tests written at this level will also have
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to be much more verbose than those written at a higher level
of abstraction.

EUROPA(Frank & Jónsson 2003), the predecessor to
EUROPA2, as part of its test suite, captured the output of
the final plan and compared it against a known-good output.
This proved to be quite brittle, since changes to the plan-
ner, plan database, model, or heuristics could dramatically
alter the output without implying a bug, and hand-verifying
output for the new known-good was both tedious and labor
intensive. The known-good method also suffers from a lim-
itation of scope—it looks only at the output, and in the case
of planning and model rule execution, the path to the final
plan is at least as important.

Another verification technique that EUROPA employed
was an examination of the final constraint network to ensure
compliance with the rules of the model. While suffering
from the output-scope problem, it also only detects errors in
the code that executes model rules which, while significant,
is only one of a plurality of components. This technique
also only checks the constraint network’s compliance with
the model, not the executed model’s compliance with the
intended model.

Clearly, there is a gap between what traditional tools can
provide and what is necessary to debug and test planning
systems efficiently. To this end, we have built two tools:
PlanWorks, a visualization and query tool for plan inspec-
tion and Aver, a language for the specification of automated
tests.

This paper is organized as follows. We first describe some
fundamentals of the EUROPA2 constraint-based planning
system. We then describe our debugging tool, PlanWorks.
We cover in light detail its views and query tools. We then
describe our test specification language, Aver. We describe
its method of asserting properties of plans with queries and
boolean comparisons. We then describe the use of these
tools to verify the description of a sample problem domain
and instance, the pipesworld, in which we cover test com-
position, a test failure, its investigation with PlanWorks, and
confirmation of the fix with both PlanWorks and the auto-
mated test. Finally, we discuss future work for both tools.

The EUROPA2 Paradigm
The context in which these tools have been developed is
EUROPA2, which provides plan database services that en-



able the integration of automated planning into a wide vari-
ety of applications.

A detailed discussion of the EUROPA2 paradigm is be-
yond the scope of this paper, but a brief discussion is in-
cluded here. A plan is a complete enumeration of the states
necessary to achieve a set of goal states from a set of initial
states which satisfies the constraints of a planning domain
and problem instance. In EUROPA2, states are represented
as predicates, each of which has a name, start time, end time,
duration, and zero or more parameters. Each instance of a
predicate in a plan is represented by a token and the param-
eters, timepoints, and duration of the predicate are repre-
sented by variables. Predicates are associated with classes
that represent types of objects, with specializations like time-
lines, which require that their sequences of states be totally
ordered, or resources, which allow concurrent states, but re-
quire that rules about consumption and production rates and
resource levels be obeyed. During planning each token is
assigned to an object. Domain rules are assertions that if
a predicate P is in the plan, then other predicates Qi must
also be in a plan and are related to P by constraints among
the variables of the predicates. Domain rules may also assert
that resources are impacted by predicates; resource impacts
are called transactions and also have variables that represent
them.

It is important to emphasize that EUROPA2 does not
implement any planning algorithm; rather, it provides ser-
vices that support different planning algorithms according
to the application, like maintaining plan state and evaluat-
ing plan consistency. The EUROPA2 plan database main-
tains the current plan state and an external planner performs
the search by resolving flaws through variable restrictions,
which amount to operations on the plan database. As such,
it can be used to support progression planners, regression
planners, sequential or causal link planners, and so on. To
enable this generality, EUROPA2 distinguishes between free
tokens (consequences of rules that haven’t been inserted into
plans), active tokens, and merged tokens. Planners can insert
free tokens into plans, making them active, or co-designate
free tokens with active tokens, making them merged.

PlanWorks
Introduction
PlanWorks is a browse-based system for debugging
constraint-based planning and scheduling systems. It as-
sumes a strong transaction model of the entire planning pro-
cess, including adding and removing parts of the constraint
network, variable assignment, and constraint propagation. A
planner logs transactions and plan states for importation into
a relational database that is tailored to support queries for
a variety of components. Visualization components consist
of specialized views to display different forms of data (e.g.
constraints, activities, resources, and causal links). Each
view allows user customization in order to display only the
most relevant information. Inter-view navigation features al-
low users to rapidly exchange views to examine the trace of
the process from different perspectives. Transaction query
mechanisms allow users access to the logged transactions to

visualize activities across the entire planning process.
PlanWorks is implemented in Java and employs a MySQL

relational database back-end. It can be used either online
while planning is performed or offline after capturing the
entire planning process. Furthermore, PlanWorks is an open
system allowing for extensions to the transaction model to
capture new planner algorithms, different classes of entity,
or novel heuristics. While PlanWorks was specifically devel-
oped for EUROPA2, the underlying principles behind Plan-
Works make it useful for many constraint-based planning
systems.

Views
The first view the user is presented with is an overview of
the entire planning sequence, an inverted histogram of the
counts of the tokens, variables, and constraints in the plan
at each step. Moving the mouse over a histogram element
will reveal the the number of elements of a particular type
at that step. At a glance, the user sees how the plan’s size
evolved throughout planning and can see patters (such as
thrashing in a chronological backtracking algorithm, or local
optimum in a local search planner). An indicator above each
histogram bar indicates whether the data for that step is in
the file system or in the PlanWorks database.

The Timeline View is designed to show the sequence of
predicates on a timeline. Since tokens can be co-designated,
the Timeline View shows the number of co-designated to-
kens that each token supports.

Because the EUROPA2 structure can be treated as a di-
rected graph (Objects→Tokens→Variables↔Constraints),
it is useful to visualize the entire graph or certain subgraphs.
Of particular interest are the causal tree, or token network,
and the constraint network. All PlanWorks graph views use
an incremental expansion method for navigation. Clicking
on a node will expand all of its arcs and place in the view
any connected nodes not already visible. Clicking on such
an “open” node closes it, and will cause any entities to which
it is related that are not connected to other open entities to
be removed from the view. To assist navigation, the graph
views provide “find by key” and “find path” to locate a par-
ticular entity in the graph and find a path between two enti-
ties, respectively.

The Token Network View visualizes the causal chain re-
sulting from planner decisions and model rules. Initially
only the root tokens—those created in the initial state—are
visible. Expanding a token node causes the appearance of
rule nodes, which represent the model rules that executed
because of the presence of the parent token in the plan. Rule
nodes can be expanded to see the text of the rule as writ-
ten in the model as well as to see the tokens created through
application of the rule.

The Constraint Network View begins with model invari-
ants, objects, tokens, and instances of rule execution. Each
of these entities is associated with a set of variables, which
in turn are in the scope of constraints. “Opening” a starting
entity will reveal its variables, each of which will reveal its
constraints when opened.

The Navigator View is the union of the Token Network
and Constraint Network views as well as information not



explicit in any other view. Beginning from an entity present
in some other view and every immediate neighbor entity, the
Navigator view allows incremental exploration of every en-
tity connection present in the plan.

The amount of information in a plan quickly exceeds that
which can be easily treated by these views, so PlanWorks
offers a Content Filter to restrict the visual elements to those
related to particular predicates, the predicates of particular
objects, or predicates within a specified window of time.

Transactions
EUROPA2 has a rich transaction set describing the vari-
ous transformations within the plan database, constraint net-
work, and rules engine that it uses for internal notification,
but which also has value in debugging. PlanWorks offers a
mechanism for querying the transactions on individual en-
tites, of a particular type, that represent the state transforma-
tion from one step to the next, or a combination of these.

Planner Control
Planning can be quite expensive in terms of time and log-
ging data after every planner decision only slows the process
down, which can be counterproductive when one is attempt-
ing to determine the existence of a bug, trace its cause, or
verify a fix. In order to alleviate this, PlanWorks has the
ability to execute the planner on-line, breakpoint, and write
only specified steps.

This planner control mechanism is achieved through the
EUROPA2 notion of a model as a compiled shared library.
From within PlanWorks, the model, planner, and initial state
are initialized and the user is presented with a control panel
offering the ability to execute the next step and write, ex-
ecute and write the next n steps, execute the next n steps
without writing, execute to the end and write the final plan,
or terminate the current run. Execution causes dynamic up-
dates of the Sequence Steps View, ensuring that the user has
an up-to-date view of what the planner is doing.

Beyond this, because models in EUROPA2 are shared ob-
jects and initial states are files loaded at planner execution
time, both can be swapped for different models or states
without re-starting PlanWorks.

Aver
Introduction
“Aver” is a language for specifying run-time tests to ver-
ify proper behavior of a planning system, from the plan
database to the model to the planner. It allows the descrip-
tion of partial or complete plans and events that occur during
planning that constitute correct behavior. Files containing
tests in Aver are converted to XML, which is then compiled
to an internal byte-code and executed at planner run-time.

Aver is used to define tests over a sequence of steps, each
corresponding to a partial plan logged by a planner during
search. This assumption is very generic, as the planner can
use any form of search from backtracking to local search.
Furthermore, the planner can log plans periodically, e.g. ev-
ery 5th decision the planner makes.

Test(’BasicAssertionExample’,
//should be true at the beginning
At first step : 1 == 1;

//should be true at the end as well
At last step : 1 == 1;

//doomed to fail after the third step
At each step > 3 : 0 != 0;

//only needs to be true once
At any step in [0 3] :
Count({1 2 3 4}) == 4;

//must be true at steps 3, 5, 7, and 9
At step in {3 5 7 9} : 1 == 1;

);

Figure 1: Basic assertions in Aver. The first two assertions
show the use of “first” and “last” in specifying steps. The
third assertion specifies a subset of steps. The last two as-
sertions show the differences between the “each” and “any”
semantics.

Tests and Assertions
The largest unit of Aver is the test. Tests are named to allow
for selective execution and contain sets of tests or assertions.
An assertion consists of a specification of the set of steps at
which the assertion must hold followed by a boolean asser-
tion about the plan state.

A step specification consists of a specification of a sub-
set of the sequence of steps, with an additional predicate
of “any” or “each”. An assertion with the “each” predi-
cate must be true at all steps matching the step specification
for the assertion to be considered true, assertions with the
“any” predicate must be true for at least one step matching
the specification. “Each” semantics is assumed if the pred-
icate is omitted. Aver also has two special step identifiers,
“first” and “last”, to refer to those steps logically rather than
numerically.

The boolean part of an assertion is a combination of
queries for plan entites, built-in function calls, value spec-
ifications, and comparisons. All values in Aver are repre-
sented as domains; sets of values represented as either enu-
merations (i.e. “{1 2 3 4}”) or intervals (i.e. “[1 4]” or
“[2.5 2.9]”). Domains that contain only one value or whose
upper and lower bounds are equal are called singleton do-
mains. This is done because, most often, values specified in
Aver are compared with the values of EUROPA2 variables,
which are themselves domains. Figure 1 offers some trivial
example assertions.

Queries and Functions
Aver provides direct queries for three types of EUROPA2

plan entities: objects, tokens, and transactions. These
queries allow for the definition of subsets of entities in the
partial plans matching the step specification through the
specification of relevant properties of the entity type. The
“Objects” query can be restricted by the object name or the
values of object variables. The “Tokens” query can be re-
stricted by the predicate name or the values of the temporal



Test(’AnotherExample’,
//there should be tokens in the plan
At last step : Count(Tokens()) > 0;

//no backtracking in this plan
At each step :
Count(Transactions(type ==

’RETRACTION’)) == 0;
//a rover can’t exceed the speed of
//light after the 10th step
At step > 10: Property(’m_maxSpeed’,

Objects(name ==
’SpiritRover’))

< 300000000;
//there is only one location the rover
//can be at initially
At first step :
Count(Property(’m_location’,

Tokens(predicate == ’Rover.at’
object == ’SpiritRover’
start == 0)))

== 1;
);

Figure 2: Some more complex assertions. The first assertion
uses the “Count” function and a query on the set of Trans-
actions to ensure that no backtracking occurred during plan-
ning. The second assertion uses the “Property” function and
a query on the set of Objects to ensure that a property holds.
The last assertion demonstrates a query on the set of Tokens
to check a property of the initial state.

or parameter variables. The “Transactions” query can be re-
stricted by the exact name of the transaction, the type of the
transaction, or the object transacted upon.

Aver has three built-in functions: “Count”, “Entity”, and
“Property”. “Count” returns the number of entities in its do-
main argument. “Entity” returns the nth entity in its domain
argument, and “Property” returns the domain of the named
variable of its single entity argument. The semantics of “En-
tity” are defined only for finite ordered domains, and the se-
mantics of “Property” are only defined for single entities.
Figure 2 has some more complex examples of assertions us-
ing queries and functions.

All boolean operators in Aver are defined at the level
of domains, so Aver supports the usual equality, less than,
greater than, less than or equal, and greater than or equal
comparison operators as well as set subset-of, intersection,
and exclusion operators.

A rough analogy can be drawn between Aver assertions
and the assert() facility available in many programming
languages. The common assert() marks a condition that
must be true at a location determined by its position in code,
and an Aver assertion marks a condition that must be true at
a location determined by its step specification. Also, both
indicate upon failure a problem that needs to be examined
with a second tool; with assert(), this is a debugger, with
Aver, PlanWorks.

Application
To demonstrate these tools, we present a model of the
“pipesworld” domain, described in detail in (Milidiú,
dos Santos Liproace, & de Lucena 2003), developed for
EUROPA2 in the modeling language developed for it,
NDDL (New Domain Description Language).

Pipesworld is a domain describing the behavior of the sys-
tems used to store and transport petroleum derivative prod-
ucts. The peculiar constraints in this domain are:

1. The pipes must be pressurized (full) at all times.

2. The tanks have per-product capacities.

3. Because of (1), and the fluid nature of the products, it is
economical to have only specific combinations of prod-
ucts present in a pipe simultaneously.

Products can be shifted onto a pipe from either end, forcing
the product present in the pipe at the opposite end into the
tank at that end.

The petroleum products are transported in units called
“batches.” We chose to represent a batch as a timeline with
predicates representing its status in a pipe or tank or being
shifted from a tank to a pipe, or vice-versa with parameters
for the tank or pipe.

We chose to model only so-called “unitary” pipes—pipes
that contain only one batch at a time—in the interest of sim-
plicity. The model is, however, still interesting because there
is an intermediate time between when the old batch is in
the tank and the new batch occupies the pipe in which both
batches are partially present in the pipe. We represent pipes
as an extension of timelines, which offer automatic mutual
exclusion, that are parameterized on the two tanks they con-
nect.

Finally, tanks are represented as objects containing collec-
tions of EUROPA2 resources, one for each type of product,
each of which is parameterized with the number of batches
of the particular product that tank can hold.

Moving a batch from a pipe to a tank creates a consump-
tion transaction on the tank’s appropriate batch-capacity re-
source at it’s end time and moving a batch from a tank to
a pipe creates a production transaction on the tank’s batch-
capacity resource at it’s end time. The semantics of a re-
source in EUROPA2 ensure that capacity is never exceeded.

In our initial state, there are three identical tanks; A1, A2,
and A3. There are two pipes, one connecting A1 and A2,
called S12, and one connecting A1 and A3, called S13. There
are also 14 batches of various products, two of which start
in the pipes an the rest are in tanks.

The details of the initial and goal states are fairly unin-
teresting, but for the purposes of this discussion, we point
out that batch 12 begins in A3 and should end in A2. Hav-
ing constructed the model and the initial and goal states, we
constructed the test in Aver before knowing what the final
plan looks like.

The most trivial aspects of the Aver test confirm that the
initial and goal states of the test are present in the final plan.
To compose the rest of the test, we had to consider the model
in conjunction with the initial and goal states. While it
isn’t currently possible to test the direct application of model



At last step :
Count(Tokens(predicate=’Batch.inPipe’

object = ’B12’
variable(name = ’m_pipe’

value= ’S13’)
start >

Property(’end’,
Tokens(predicate=’Batch.inTank’

start = 0 object = ’B12’
variable(name = ’m_tank’

value = ’A3’)))))
> 0;

Figure 3: A rule-checking assertion.

rules, it is possible to make assertions about their necessary
effects, and it is this type of assertion that composes the ma-
jority of the test suite. For example, the assertion in Figure 3
checks the property that batch 12 must be in pipe S13 some-
time after it’s in tank A3, which it must necessarily be to end
in tank A2.

We mention this assertion in particular because it was the
first to fail. Inspection in PlanWorks confirms this. A look at
the Timeline View shows that batch B12 is shifted from tank
A3 to pipe S12, a clear violation of the intended semantics
of the model. Images from the Constraint Network View
are shown in Figure 4 to make the parameter values more
visible. This indicates a missing constraint.

Looking at the model text in Figure 5, we see that there
is, indeed, a missing constraint.

This constraint can be achieved using NDDL’s existential
quantification, which selects objects based on filtering cri-
teria. If we add the code in Figure 6 to the rule, where the
comment about the missing constraint occurs, the test should
pass. And, indeed, we find that it does. This is further con-
firmed by PlanWorks as seen in Figure 7.

Future Work
PlanWorks
PlanWorks was originally conceived of as an integrated de-
velopment environment for building and managing projects
with EUROPA2 and it is our intention to continue to de-
velop features to aid in those tasks. In the near future, Plan-
Works will be extended to handle model visualization and
visual model building, and visualizing simple temporal net-
works. We also will use PlanWorks’ plugin system to create
planner-specific views of decision structures and heuristics.

We believe that features like automated examination of
the constraint network and its execution trace to determine
nogoods and the ability to alter the plan state during plan-
ner execution through the planner control mechanism will
greatly add value.

Aver
As Aver becomes a more integral part of EUROPA2’s test
suite, we will add features to extend it’s power. In particular,
extending the step specification to deal with properties of

Figure 4: Top: The inTank token. Bottom: The erroneous
inPipe token.

Batch::inTank {
meets(object.shiftingToPipe stp);
//should be a constraint here
//requiring that the pipe
//have the current tank as an endpoint
starts(Resource.change tx)
eq(tx.quantity, 1);
if(object.m_product == lco) {
eq(tx.object, m_tank.m_lco);

}
if(object.m_product == gasoline) {
eq(tx.object, m_tank.m_gasoline);

}
//...

}

Figure 5: An erroneous rule.



bool b;
if(b == true) {
PipeSegment p1 : {
eq(p1.m_to, m_tank);

}
eq(stp.m_pipe, p1);

}
if(b == false) {
PipeSegment p2 : {
eq(p2.m_from, m_tank);

}
eq(stp.m_pipe, p2)

}

Figure 6: Existential quantification to fix the model.

Figure 7: The inPipe token correctly constrained.

the step beyond just its number would reduce the fragility
of Aver tests as well as allowing for implicative assertions,
which are much more useful when verifying models.

We will extend the query capabilities to include struc-
tural assertions (entities with properties X are connected to
things with properties Y ), add configurable transaction sets
to allow querying for custom transactions, and allow queries
based on the model types of entities.

The assertion mechanism will be improved to allow for
arithmetic expressions and disjunctive assertions, as well as
optional assertions.
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